Injection Molding & Plastic Parts & Plastic Mold

Professional Injection Molding Manufacturers from China

Home About Products Raw Material Quality Links Blog Contact us Sitemaps

Online Catalogue

Injection molding
  Cap & lid
  Bucket & Pail
  Auto parts
  Other small components
Plastic Blow molding

  Jerrycan Mold
  Tool box
  Blow Bottle

Precision Metal Stamping

4.4.2 Recent developments

Some of the most significant new product development trends in antioxidants are as follows:

■ “Lactone” stabilizers are a new class of materials that are reputed to stop the autoxidation process before it starts. These products, which are derivatives of the benzofuranone family, act as C-radical scav- engers in combination with primary and secondary antioxidants. These blends (Ciba’s HP) claim to be particularly effective in high- temperature and high-shear processing.
■ A new phosphite secondary antioxidant, based on butyl ethyl propane diol, reputedly yields high activity, solubility, and hydrolyt- ic stability in a range of polymers. This would allow the producer to use lower levels of additives to achieve similar results.
■ Antioxidants (AO) in the form of pellets are challenging the granule forms. Advantages include low-dusting, easy flowing, and lower-cost systems. Most major AO suppliers are now marketing these product forms.
■ Selected suppliers are promoting hindered amine light stabilizers for the combined use as antioxidants.

4.4.3 Suppliers

There are over 70 suppliers of antioxidants worldwide. Numerous suppliers offer both primary and secondary antioxidants to complete their product line. However, very few actually manufacture both pri- mary and secondary antioxidants, since the products are based on dif- ferent manufacturing routes, processes, and feedstock sources. As a result, it is quite common in this industry to resell products produced by another company. Table 4.4 displays selected suppliers of antioxi- dants by type.

4.4.4 Trends and forecasts

The overall growth of antioxidants in plastics will be influenced by the following factors:

■ Growth of the polyolefin industry, especially polypropylene.
■ Increased price competition as patents expire; this will force some suppliers to accept lower margins and/or to segment their customer base and concede lower margin accounts to selected competitors.
■ Continued premiums will be possible for technical innovation where unique products bring value to the market. Examples include:

Higher processing temperature performance
New chemistry (for example, hydroxyl amines) replacing phenolic- based systems, avoiding potential toxicity and color issues
Higher molecular weight AOs to reduce volatility during processing
Better long-term stability

TABLE 4.4 Selected Antioxidant Suppliers

Equal performance at lower loading levels
More economical product forms and blends

Over the next 5 years, consumption of antioxidants is expected to grow somewhat evenly around the world at a rate of about 5%/year.

4.5 Antistatic Agents

4.5.1 Description

Plastics are inherently insulative (typical surface resistivities in the range of 1012 to 1014 K/square) and cannot readily dissipate a static charge. The primary role of an antistatic agent or antistat is to prevent the buildup of static electrical charge resulting from the transfer of electrons to the surface. This static electricity can be generated during processing, transportation, handling, or in final use. Friction between two or more objects (for example, the passage of copy paper over a roller) is usually the cause of static electricity. Typical electrostatic voltages can range from 6000 to 35,000 V.
When the unprotected plastic is brought into contact with another material, loosely bound electrons pass across the interface. When these materials are then separated, one surface has an excess charge, while the other has a deficiency of electrons. In most plastics the excess charge will linger or discharge, causing the following problems:

■ Fire and explosion hazards
■ Poor mold release
■ Damage to electrical components
■ Attraction of dust

Antistats function to either dissipate or promote the decay of static electricity. Secondary benefits of antistat incorporation into polymer systems include improved processability and mold release, as well as better internal and external lubrication. Therefore, in certain applica- tions, antistatic agents can also function as lubricants, slip agents, and mold release agents.
This discussion will focus on chemical antistats and excludes inor- ganic conductive additives such as carbon black, metal-coated carbon fiber, and stainless steel wire. Chemical antistatic additives can be cat- egorized by their method of application (external and internal) and their chemistry. Most antistats are hydroscopic materials and function primarily by attracting water to the surface. This process allows the charge to dissipate rapidly. Therefore, the ambient humidity level plays a vital role in this mechanism. With an increase in humidity, the surface conductivity of the treated polymer is increased, resulting in a rapid flow of charge and better antistatic properties. Conversely, in dry ambient conditions, antistats which rely on humidity to be effective may offer erratic performance.

External antistats. External, or topical, antistats are applied to the sur- face of the finished plastic part through techniques such as spraying, wiping, or dipping. Since they are not subjected to the temperatures and stresses of plastic compounding, a broad range of chemistries is possi- ble. The most common external antistatic additives are quaternary ammonium salts, or “quats,” applied from a water or alcohol solution.
Because of low temperature stability and potential resin degrada- tion, quats are not normally used as internal antistats. However, when topically applied, quats can achieve low surface resistivities and are widely used in such short-term applications as the prevention of dust accumulation on plastic display parts. More durable applications are not generally feasible because of the ease with which the quat antistat coating can be removed from the plastic during handling, cleaning, or other processes. For longer-term protection internal antistats are used.

Internal antistats. Internal antistats are compounded into the plastic matrix during processing. The two types of internal antistats are migratory, which is the most common, and permanent.

Migratory antistats (MAS). Migratory antistats have chemical structures that are composed of hydrophilic and hydrophobic components. These materials have limited compatibility with the host plastic and migrate or bloom to the surface of the molded product. The hydrophobic portion provides compatibility within the polymer and the hydrophilic portion functions to bind water molecules onto the surface of the molded part. If the surface of the part is wiped, the MAS is temporarily removed, reducing the antistat characteristics at the surface. Additional mater- ial then migrates to the surface until the additive is depleted. These surface-active antistatic additives can be cationic, anionic, and non- ionic compounds.
Cationic antistats are generally long-chain alkyl quaternary ammo- nium, phosphonium, or sulfonium salts with, for example, chloride counterions. They perform best in polar substrates, such as rigid PVC and styrenics, but normally have an adverse effect on the resin’s ther- mal stability. These antistat products are usually not approved for use in food-contact applications. Furthermore, antistatic effects compara- ble to those obtained from other internal antistats such as ethoxylated amines are only achieved with significantly higher levels, typically, five- to tenfold.
Anionic antistats are generally alkali salts of alkyl sulfonic, phos- phonic, or dithiocarbamic acids. They are also mainly used in PVC and styrenics. Their performance in polyolefins is comparable to cationic antistats. Among the anionic antistats, sodium alkyl sulfonates have found the widest applications in styrenics, PVC, polyethylene tereph- thalate, and polycarbonate.
Nonionic antistats, such as ethoxylated fatty alkylamines, represent by far the largest class of migratory antistatic additives. These addi- tives are widely used in PE, PP, ABS, and other styrenic polymers. Several types of ethoxylated alkylamines that differ in alkyl chain length and level of unsaturation are available. Ethoxylated alky- lamines are very effective antistatic agents, even at low levels of rela- tive humidity, and remain active over prolonged periods. These antistatic additives have wide FDA approval for indirect food contact applications. Other nonionic antistats of commercial importance are ethoxylated alkylamides such as ethoxylated lauramide and glycerol monostearate (GMS). Ethoxylated lauramide is recommended for use in PE and PP where immediate and sustained antistatic action is needed in a low-humidity environment. GMS-based antistats are intended only for static protection during processing. Even though GMS migrates rapidly to the polymer surface, it does not give the sus- tained antistatic performance that is obtainable from ethoxylated alkylamines or ethoxylated alkylamides.
The optimum choice and addition level for MAS additives depends upon the nature of the polymer, the type of processing, the process- ing conditions, the presence of other additives, the relative humidity, and the end use of the polymer. The time needed to obtain a sufficient level of antistatic performance varies. The rate of buildup and the duration of the antistatic protection can be increased by raising the concentration of the additive. Excessive use of antistats can, howev- er, lead to greasy surfaces on the end products and adversely affect printability or adhesive applications. Untreated inorganic fillers and pigments like TiO2 can absorb antistat molecules to their surface, and thus lower their efficiency. This can normally be compensated for by increasing the level of the antistat. The levels of antistat for food- contact applications are regulated by the U.S. Food and Drug Administration (FDA).

Permanent antistats. The introduction of permanent antistats is one of the most significant developments in the antistat market. These are polymeric materials which are compounded into the plastic matrix. They do not rely on migration to the surface and subsequent attraction of water to be effective. The primary advantages of these materials are

■ Insensitivity to humidity
■ Long-term performance

■ Minimal opportunity for surface contamination
■ Low offgassing
■ Color and transparency capability

There are two generic types of permanent antistats: hydrophilic polymers and inherently conductive polymers. Hydrophilic polymers are currently the dominant permanent antistats in the market. Typical materials that have been used successfully are such polyether block copolymers as PEBAX from Atochem. Typical use levels for these materials are in excess of 10%. B.F. Goodrich is supplying com- pounds utilizing their permanent antistat additive, STAT-RITE. Office automation equipment, such as fax and copier parts, is the principal application for permanent antistats based on hydrophilic polymers. The most common resins are ABS and high-impact poly- styrene (HIPS).
Another approach to achieving permanent antistatic properties is through the use of inherently conductive polymers (ICP). This technol- ogy is still in the early development stages. The potential advantages of ICP include achieving higher conductivity in the host resin at lower additive loading levels than can be achieved with hydrophilic poly- mers. The principal ICP technology to date is polyaniline from Zipperling-Kessler and Neste. This material is a conjugated polymer composed of oxidatively coupled aniline monomers converted to a cationic salt with an organic acid and is frequently described as an organic metal. Other approaches to ICPs include neoalkoxy zirconates from Kenrich Petrochemical and polythiophenes from Bayer. The issues to be resolved in achieving commercial success with these mate- rials include improved stability at elevated temperatures and reduc- tion in their relatively high cost. ICPs are not expected to compete with other chemical additives but primarily with carbon black or other conductive fillers.
Permanent antistatic properties can be readily obtained with such
particulate materials as carbon black. However, these materials are inappropriate for applications where color and/or transparency capa- bility is important. Also, particulate additives can negatively affect the physical properties of the final part and contribute to contamination in electronic applications also known as sloughing.

Home About us Products Raw Material Quality Links Blog Contact us Sitemaps @e-mail
Copyright ©Wuxi Glory Plastics Co.,Ltd. (injection molding , plastic molded parts, Plastic cap, plastic closure, Blow Molding)